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Abstract. Gravitational effect in colloidal suspensions is examined both theoretically and 
experimentally by light scattering. In contrast to the previous theory the present theory 
predicts the cube of the nearest-neighbour distance to vary linearly as a function of height 
of the suspension. The position of the first peak in the static structure factor of the 
suspension having liquid-like order is used to obtain average nearest-neighbour distance. 
The experimental data fit well to the present theory. The bulk modulus of the liquid order 
estimated for the first time by this method is found to evolve as a function of time. The time 
taken for the colloidal suspension to reach gravitational equilibrium as well as deionisation 
equilibrium is obtained. The time to reach gravitational equilibrium is found to be much 
less than earlier theoretical estimates based on a simple model. A possible mechanism for 
this is proposed. Concentration dependence of the saturation bulk modulus is obtained 
and discussed. 

1. Introduction 

Aqueous suspensions of polystyrene particles are known to develop liquid or crystalline 
solid-like order depending on the extent of ionic purity (deionisation) (Pieranski 1983, 
Clark et a1 1979). The particles interact predominantly via the screened Coulomb 
repulsion (Hess and Klein 1983, Maleki et a1 1983). Since the density of polystyrene 
particles (1.05 g ~ m - ~ )  is not the same as that of water (1.Og ~ m - ~ )  there is a certain 
amount of gravitational force on the particles. Because of the small size of the particles 
(-0.1 p m  diameter) the gravitational effects are small but still measurable. Gravity 
causes the particle concentration to be higher at the bottom than at the top of a column 
of colloidal suspension. The extent to which the concentration at the bottom and at 
the top of a column are different is governed by the elastic properties of the suspension 
(Crandall and Williams 1977) which in turn is determined by the strength and the 
range of the interaction between the particles. As the interparticle separation is of the 
same order (- 1 p m )  as the wavelength of light in the visible region, light scattering 
is the most convenient technique to probe the structure of the suspension (Gruner and 
Lehmann 1982). The time averaged first-order light scattered intensity is directly 
proportional to the static structure factor (Dhont 1983). 

Crandall and Williams (1977) have derived a simple expression relating the height 
dependence of the lattice parameter in a column of colloidal crystals to its elastic 
modulus. Their simple theory predicts the nearest-neighbour ( N N )  distance to vary 
linearly as a function of the height in the suspension. However they have taken the 
particle concentration to be independent of the height of the suspension which is 
inconsistent as this would lead the N N  distance to also be independent of the height. 
In the present work a theory of the gravitational compression in colloidal suspension 
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is worked out which removes the inconsistency. The theory is presented in terms of 
N N  distances so that it is applicable to a suspension with liquid order also. The present 
theory predicts the cube of the N N  distance (which is proportional to the unit cell 
volume in the crystalline case and to the average volume occupied by each particle in 
the case of liquid order) to vary linearly as a function of the height of the suspension. 
To verify the theory the gravitational compressions are measured in colloidal sus- 
pensions having liquid-like order with different particle concentration by light scatter- 
ing. The height dependence of the N N  distance agrees very well with the present theory. 
The data when fitted to the linear dependence of Crandall and Williams (1977) does 
not yield a good fit. The evolution of the estimated bulk modulus of the liquid order 
as a function of time is examined and compared with other reported results. The time 
taken by the suspension to reach gravitational equilibrium is obtained and compared 
with the theoretical estimates. The concentration dependence of the saturation bulk 
modulus is also studied and discussed. 

2. Theory 

Consider a column of colloidal suspension of total height h. Because of gravitational 
force, the particle concentration ( n , )  and hence the N N  distance ( I )  changes con- 
tinuously from the bottom to the top of the column. At any given height Z from the 
bottom, the particle concentration and the N N  distance are related by 

np(  2 )  = A/  1 3 (  Z) 

where the constant A has a value 3&/4 for a BCC solid and for a FCC solid. 
However, for liquids one can define only an average N N  distance; consequently the 
value of A is not uniquely defined and one needs to be careful when choosing a value 
for A. The difference in the value of the N N  distance at Z + d Z  and Z arises due to 
the pressure exerted on plane Z by the particles in the region between Z and Z + d Z .  
If the suspension has a liquid-like order, the pressure at any plane Z will be hydrostatic 
(isotropic) in nature. The situation concerning a crystalline suspension is more compli- 
cated. Usually the time taken by a suspension to reach gravitational equilibrium (of 
the order of a few hours (present work)) is much shorter than that for crystallisation 
to occur (of the order of a few days (Crandall and Williams 1977, present work)) and 
hence in such cases one can also expect the pressure to be hydrostatic because the 
crystals would then grow under the environment of hydrostatic pressure. However, if 
crystallisation occurs much earlier (say, after shaking the sample) than the gravitational 
equilibrium, then the pressure at any plane would have both uniaxial and hydrostatic 
components because the lateral dimensions of the suspension are bounded by the cell 
walls. The relative magnitudes of hydrostatic and uniaxial stresses in this case would 
be determined by the ratio of the gravitational stress to the shear modulus of the 
crystalline order. However, a purely uniaxial stress is not possible. The uniaxial 
component of the stress may also lead to anisotropy of the N N  distance in both 
horizontal and vertical directions. Hence in such samples the unambiguous observation 
of the gravitational effect would be more difficult and its interpretation would be more 
complicated. Crandall and Williams’ (1977) observations (shaking the suspension 
during the crystallisation led to permanent mechanical distortions in the crystals which 
masked the effect they were trying to measure) also support the present arguments. 
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Consider a colloidal suspension having crystalline or liquid-like order in which the 
gravitational stress is hydrostatic in nature. If B is the bulk modulus of the suspension, 
then equating the gravitational force to the elastic restoring force one can write 

where D is the particle diameter, peff = pparticle - pwater is the effective density of the 
particle and g is the acceleration due to gravity. It may be noted that l 3  is proportional 
to the volume available for each particle. For comparison it is pertinent to give the 
equation used by Crandall and Williams (1977) which is 

where ii, is the average concentration in the suspension, Z, is the mean height of the 
suspension and they call the proportionality constant E Young’s modulus. Equation 
(2a )  represents a pure uniaxial stress which is not possible as we have already discussed. 
However, it should be pointed out that the samples used by Crandall and Williams 
(1977) took several days for crystallisation and hence the gravitational stress must be 
hydrostatic rather than uniaxial. Equation (2) can be written as 

d(13(Z)) = ( “:Leffg)np(Z)13(Z) dZ. 

Substituting equation (1) in equation (3) one obtains 

(3) 

In the above equation the dependence of B on the height Z (due to variation in the 
concentration with Z)  has not been explicitly put in. If B strongly depends on Z, any 
treatment that takes B to be independent of height will be limited in its validity to 
small variations in the NN distance. Hence the height dependence of B is discussed 
in the following paragraph. 

The elastic constants of a colloidal suspension (either crystalline or liquid) are 
known to depend on concentration of particles (Crandall and Williams 1977, Gruner 
and Lehmann 1982, Lindsay and Chaikin 1982). Gruner and Lehmann (1982) have 
reported a quadratic dependence of B in the case of liquid-like order and a linear 
dependence for crystalline order. Crandall and Williams (1977) have got a concentra- 
tion dependence of Young’s modulus of crystalline order which is weaker than linear 
whereas Lindsay and Chaikin ( 1982) have obtained a concentration dependence of 
shear modulus which is in between linear and quadratic. The theoretical estimates of 
bulk and shear moduli (Arora and Kesavamoorthy 1984) based on the simple model of 
Lindsay and Chaikin (1982) show that these elastic constants depend also on concentra- 
tion of impurity ions and no unique power law can be obtained. It must be pointed 
out that the experimental concentration dependence of elastic moduli have been 
obtained from samples of different average concentrations and represent average 
macroscopic elastic moduli for that average concentration. Though the concentration 
may vary from top to bottom within a single sample due to gravitational effects, in 
equilibrium it is reasonable to expect the entire suspension to have a single unique 
macroscopic average elastic modulus as various regions (top, middle and bottom) of 
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the sample are not isolated but are in real physical contact with each other and must 
be in equilibrium with each other. However this point can be experimentally verified 
and is discussed in the forthcoming sections. For the sake of completeness, the 
concentration dependence of B is explicitly considered in the appendix and complete 
expressions are worked out. But for the present B is taken not to vary with the height 
of the suspension. Equation (4) can be integrated to yield 2 dependence of the N N  

distance as 

where 1, is the N N  distance at Z = 0. Equation ( 5 )  can be rewritten in a more convenient 
form as 

( 1 ( ~ ) / 1 , ) ~  = 1 + ( ~ ~ , ( o ) / B ) z  (6) 

where b = rD3gp,,/6 and n,(O) is the particle concentration at 2 = 0. However 1 and 
n,(O) can be related to the average particle concentration (A,) if one considers the 
conservation of total number of particles ( N )  in the suspension. This leads to 

ShA, = N = S jOh n,(Z) d Z  (7) 

where S is the area of cross section of the column. Equation (7) when integrated and 
simplified gives 

bn,(O)h/B=exp(bA,h/B)- 1. (8) 
Equation (6) allows one to estimate the bulk modulus B of a crystalline phase of 
suspension in a straightforward manner as one can measure 1 and n, experimentally 
from the light diffraction (for example in the BCC phase l=(2.rr/Kll0)&/2 and 
np = ( Kl10/27r)3/fi where Kllo is the wavevector corresponding to diffraction from 
[I101 planes). In a liquid phase it is not simple to write such expressions for 1 and 
n,, however, the following experimental facts allow one to relate the average N N  

distance (/> to wavevector ( KP) corresponding to the first peak in the structure factor, 
S ( K ) .  (a) The density (and hence the packing) does not change by more than two 
per cent across any liquid-solid interface (Warren 1969) implying that average 1 
(liquid) = 1 (solid). (b) The first peak in S ( K )  appears at the same position as the first 
diffraction peak in the corresponding solid phase (e.g. K ,  in the BCC phase) (Warren 
1969, Gruner and Lehmann 1982) i.e. K ,  = Kilo. This implies that the local structure 
(at least the coordination in the first shell) in the liquid phase is not drastically different 
from that for the crystalline phase. Hence in analogy with the crystalline solid it is 
reasonable to take the average N N  distance in liquid as 

1K Kpl. (9) 
Hence in the case of liquid order one can estimate n,(O)/B from equation (6) and 
then B can be estimated from equation (8) as A, is known independently. It is important 
to point out that equation ( 2 a )  predicting l ( Z )  varying linearly in 2 used by Crandall 
and Williams (1977) to analyse their data is only the derivative equation for Z(Z). The 
equation (2a)  when integrated gives the Z dependence of Z(Z) as the exponential 
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Equation (10) can be approximated to be linear in Z only within certain limits. When 
the concentration dependence of the bulk modulus is explicitly taken into account (as 
derived in the appendix) the predicted Z dependence is a power law and one can fit 
the data to equation (13) to experimentally determine the concentration dependence 
of the bulk modulus. 

3. Experimental 

Aqueous suspensions of polystyrene spheres of 0.091 p m  diameter (from M/s  Serva 
Feinbiochemica GmbH, FRG) were prepared in deionised water (conductivity 
=2 pmho cm-’) at different particle concentrations ranging from 3.2 x lo’* cm-3 to 
9.5 x 10” cm-3 by diluting the stock suspension. The samples were in a cylindrical 
glass scattering cell (diameter 1 cm, height 2.5 cm) that also contained a mixed bed of 
ion exchange resin at its bottom (cation: Dowex; anion: Duolite A 161C). The resin 
to sample ratio was 1 : 5. The cells were closed using teflon stoppers. In concentrated 
samples crystallisation occurred in the region close to the resin after one or two days. 
One could easily distinguish the crystalline order from the liquid order by its opales- 
cence and Bragg diffraction of a laser beam. Crystallites were found typically up to 
2 to 3 mm above the resin. On top of the crystalline region liquid order was observed. 
The interface between crystalline and liquid order was plane and horizontal. In many 
cases crystallisation occurred first close to the walls of the lower region of the cell 
indicating that leaching of small ions from the walls was not significant. Due to 
gravitational compression the concentration of particles at the bottom is higher than 
that at the top. As the crystalline to liquid-order transition is of first order (Williams et 
a1 1976), depending on the charge on the particle and the level of ionic impurities 
there exists a critical particle concentration beyond which a crystalline order can be 
seen. Hence one can expect the crystallites at the bottom and the liquid order at the 
top. The dilute samples had only liquid order. The scattering cell was immersed in a 
cylindrical glycerine bath (diameter 6cm, height 6cm) which acted as an index 
matching liquid as well as a constant temperature bath. The polarised W ( V: vertical) 
light scattering was measured in the suspension in the region having liquid-like order 
as a function of scattering vector using a set-up described earlier (Arora 1984). A 
He-Ne laser (power 10 mW) was used as a source. The scattering cell along with the 
bath was positioned using a XYZ translation stage and measurements were made at 
different heights in the scattering cell to obtain the scattering vector K ,  corresponding 
to the first peak in the structure factor S ( K )  of the liquid-like order. The average 
particle concentration ii, was obtained by finding the total weight of polystyrene spheres 
after carefully drying a sample of known weight (Udo and de Souza 1980). 

4. Results and discussions 

Figure 1 shows the cube of the estimated average N N  distance as a function of the 
height of the colloidal suspension. The straight line is a least squares fit of the 
experimental points to equation (6). For the sake of comparison the same data were 
also least squares fitted to (a) linear, (b) exponential and (c) power law dependencies. 
The results of fittings are shown in table 1. One can see from figure 1 and table 1 that 
equation (6) fits best to the experimental data. If the bulk modulus had varied as a 
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0 4 a 12 
Z i n "  

Figure 1. [I(Z)/1,]3 (I(2): estimated average N N  distance at height Z )  as a function of 
height Z in the suspension having liquid-like order. Straight line is a least squares fit to 
the data points. The slope of the line is used to obtain the bulk modulus of the suspension 
as described in the theory. ii, = 4.76 X 10l2 C I I - ~ .  

Table 1. Summary of the least squares fitting of the experimental data to various functions. 

Fitted parameters Residual sum 
of squares 

Function fitted A1 A2 X l O S  

Power law y = ( I +  AlZ)A2 0.064 * 0.025 0.3 18 * 0.107 2.15 
Equation (6)  y = ( I + A , Z ) ' 1 3  0.0600 f 0.0008 - 2.16 
Linear y = ( I +  A , Z )  0.0178 * 0.0003 - 5.1 
Exponential Y = exp(A,Z)  0.0168 * 0.0004 - aa 

function of height then the plot of ( l (Z ) / l0 ) j  against Z (figure 1) would show a 
departure from straight line. Hence experimental data as shown in figure 1 confirms 
that the entire suspension had a single unique bulk modulus. It may be noted that 
the data when fitted to power law (two parameters) also gives the same residual sum 
of squares as that for equation ( 6 ) ;  however the error bars of the fitted parameters are 
large because of the larger number of parameters. The value of q obtained from the 
parameter A 2  has the value 0.04k0.2 which also supports a height independent bulk 
modulus. It is worth mentioning that the data of Crandall and Williams (1977) (sample 
in H,O) when fitted to these four expressions gives the best fit for the equation ( 6 ) .  

Deionisation of the colloidal suspensions by ion-exchange resin is known to be a 
slow process. We have obtained the time taken to reach deionisation equilibrium for 
the first time by light scattering measurements. Time evolution of the bulk modulus 
in a colloidal suspension after the addition of ion-exchange resin is shown in figure 
2. The bulk modulus increases monotonically and reaches its saturation value typically 
in ten days. Other particle concentrations also show a similar behaviour. The observed 
time evolution can be understood in the following way. Initially the concentration of 
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Figure 2. Time evolution of the bulk modulus of the colloidal suspension after the addition 
of ion-exchange resin. iio = 4.76 x l o i 2  ~ m - ~ .  

impurity ions is fairly large and the Coulomb interaction between particles is effectively 
screened. The ion-exchange resin removes the impurity ions slowly (Williams er a1 
1976) (because of the small volume of the sample, however, it was not possible to 
determine the time evolution of the concentration of the impurity ions) and con- 
sequently the range of the screened Coulomb interaction increases gradually causing 
a liquid-like order to develop. It is observed that in the beginning the peaks in the 
structure factor (characteristic of the liquid-like order) are not very pronounced 
indicating a weak liquid-like order; the corresponding bulk modulus is low. As the 
extent of deionisation of water increases gradually, the structure factor develops strong 
peaks indicative of a strongly interacting liquid and  correspondingly its bulk modulus 
is also found to have increased. The observed evolution of the structure factor is 
similar to the one reported by Brown et a1 (1975). Increase of shear modulus with 
decreasing impurity ion concentration (similar to the one observed here) has been 
reported both theoretically and experimentally in the case of crystalline order also 
(Lindsay and  Chaikin 1982). However the time evolution was not investigated. 

As the particle size is very small, gravitational drag on the particle is small and it 
may take a long time to reach gravitational equilibrium. A simpleminded estimate 
(Pieranski 1983) of the time taken by a column of 1 cm height (particle diameter 
0.1 p m )  to reach sedimentation (gravitational) equilibrium is of the order of lo7 s which 
is the time taken by a particle to drift from the top to bottom. However the changes 
in the particle concentration over the height of the suspension due to gravitational 
effect is expected to come about by small and  local movement (over a few NN distance) 
of particles and  the time taken for this is expected to be much smaller than estimated 
previously (Pieranski 1983). To confirm this, a sample that had reached steady state 
of deionisation was shaken to make the particle concentration uniform throughout the 
column and  then the time evolution of the particle concentration ( n p " c K p 3 )  at the top 
of the suspension was monitored by recording the structure factor at different times. 
Figure 3 shows such a time evolution for a suspension with particle concentration of 
4.76 X 10'' ~ m - ~ .  One can see that at the top of the suspension the particle concentration 
slowly reduces and  it takes typically 3 h ( -  lo4 s) to reach the gravitational equilibrium 
confirming the present arguments. The estimated maximum distance drifted by a 
particle during this time turns out to be of the order of 3 p m  which appears reasonable. 
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Figure 3. Time evolution of the estimated particle concentration at the top of the suspension 
after a deionised sample was shaken and left undisturbed. Time taken to reach gravitational 
equilibrium is typically 3 h. n,(Z, 0) = 4.76 x 10” ~ 1 3 3 ~ ~ .  

It may be noted that the time taken to reach the gravitational equilibrium is much 
shorter than that for the deionisation equilibrium. 

As discussed earlier elastic constants of a colloidal suspension depend on the 
particle concentration. The present measurements of the saturation bulk moduli for 
different concentrations are shown in figure 4. It is important to note that the bulk 
modulus goes like the square of the particle concentration. Griiner and Lehmann 
(1982) have estimated the bulk modulus from the value of the static structure factor 
in the hydrodynamic limit ( k  = 0). They pointed out that because of errors involved 

I 1 

5.0 k 

5 0 . 5 1  

m ! 

0.2 c 

0.5 1.0 2.0 5.0 10.0 20.0 
np (10’’ ~ m - ~ )  

Figure 4. Concentration dependence of saturation bulk modulus (3). Data of Griiner and 
Lehmann (1982) (0) is also shown for comparison. The slope of the full line drawn 
through the points is 2.010.2.  
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in the extrapolation such estimated bulk moduli may have systematic errors of -50% 
to +150%; however the concentration dependence is unaffected. Their estimated bulk 
moduli are also shown in figure 4 for the sake of comparison. It can be seen from 
figure 4 that the data of Griiner and Lehmann (1982) agree very well with the present 
more direct and accurate measurements. It is worth emphasising that measurements 
of the elastic constants in the case of crystalline order yield the concentration depen- 
dence different from the quadratic (Griiner and Lehmann 1982, Crandall and Williams 
1977, Lindsay and Chaikin 1982). A simple theory similar to that of Lindsay and 
Chaikin (1982) is not really adequate. This aspect requires rigorous theoretical con- 
sideration. 

5. Conclusion 

The present theoretical and experimental investigations of gravitational compression 
in colloidal suspensions show that the cube of the nearest-neighbour distance varies 
linearly with the height of the suspension. The estimated bulk modulus is found to 
increase slowly as the ion-exchange resin deionises the water. The time taken for the 
system to reach gravitational equilibrium is found to be much less than previously 
estimated. The present more accurate concentration dependence of saturation bulk 
modulus shows a quadratic behaviour. 
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Appendix 

Let the concentration dependence of B be given as some power law 

where P is the constant of proportionality. Substituting equations (Al)  and (1) in 
equation (4) and after simplifying one gets 

T D ~ ~ , , ~ A ' - ~  
18P 

1(Z)2-34 d l (Z)  = d Z. 

Equation (A2) when integrated with appropriate boundary conditions gives 

If q = 1, equation (A2) when integrated gives an exponential behaviour similar to that 
of equation (10). 
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